check matrix造句
例句與造句
- Direct model checking matrix algorithm
直接模型檢測(cè)矩陣算法 - In b3g - system , the ldpc code has been used with the random irregular parity - check matrix , which the data length is 3944
“ b3g ”系統(tǒng)中, ldpc碼校驗(yàn)矩陣為隨機(jī)的非規(guī)則校驗(yàn)矩陣,碼長(zhǎng)為3944比特。 - This article uses the parity check matrix to produce a simplified decoding table under the premise of not using the structure standard array
摘要在不用構(gòu)造標(biāo)準(zhǔn)陣列的前提下,利用一致校驗(yàn)矩陣直接生成簡(jiǎn)化的譯碼表。 - ( 2 ) introduce the graph theory of ldpc codes ; analyse the impact of cycle ; and research how to construct the parity check matrix
( 2 )介紹了ldpc碼圖模型理論;分析環(huán)對(duì)ldpc碼性能的影響;并討論了如何構(gòu)造ldpc碼校驗(yàn)矩陣。 - By column exchanging , the ( m , n ) parity check matrix is divided into k ( m , ni " ) sub - matrixes which obey the same rules
該方法對(duì)m行n列的校驗(yàn)矩陣進(jìn)行列交換處理,使得校驗(yàn)矩陣形成k個(gè)m行ni '列的子矩陣,每個(gè)子矩陣具有一定的規(guī)律。 - It's difficult to find check matrix in a sentence. 用check matrix造句挺難的
- In chapter 3 , we propose the methods for finding the generator matrix of a quasi - cyclic ldpc in “ systematic form ” from its parity - check matrix and its corresponding encoding schemes
在第三章,我們繼續(xù)介紹了準(zhǔn)循環(huán)結(jié)構(gòu)的ldpc碼生成矩陣的求解及其對(duì)應(yīng)的編碼方案。 - Low density parity check ( ldpc ) code , which is a special case of error correction code with sparse parity - check matrix , has the performance very close to the shannon limit
Ldpc碼是一種特殊的具有稀疏校驗(yàn)矩陣的糾錯(cuò)編碼,其性能逼近香農(nóng)限。這種碼具有實(shí)現(xiàn)復(fù)雜度低和數(shù)據(jù)吞吐量高的優(yōu)點(diǎn)。 - Low density parity check codes are a class of linear block error - correcting codes that can be defined by the very sparse parity - check matrix . their error performance approach shannon limits
Ldpc碼(低密度校驗(yàn)碼)是一類可以用非常稀疏的奇偶校驗(yàn)矩陣定義的線性分組糾錯(cuò)碼,具有逼近香農(nóng)限的性能。 - The linear block code is called a binary low - density parity - check code if it is based on a sparse parity - check matrix . this sort of code was originally proposed by dr . gallager in 1962 , which cannot attract a large amount of interest at that time
低密度奇偶校驗(yàn)( ldpc )碼是基于稀疏校驗(yàn)矩陣的線性分組碼,它最初由gallager于1962年提出,當(dāng)時(shí)并未受到人們的重視。 - Since ldpc codes have a wonderful future , an adaptive coding scheme was developed based on quasi - regular ldpc codes and it encodes the source bits with different code rate by dividing the original parity check matrix properly
由于ldpc碼在未來的廣闊應(yīng)用前景,本文提出一種針對(duì)結(jié)構(gòu)化ldpc碼的自適應(yīng)編碼方案,對(duì)原始校驗(yàn)矩陣適當(dāng)變化,即可對(duì)信源信息進(jìn)行不同碼率的自適應(yīng)編碼。 - Then discusses conventional encoding and efficient encoding using special sparse parity check matrix in encoding algorithm , and expatiates the principle of message passing and spa which has the best performance in decoding algorithm
在編碼算法里詳細(xì)討論了傳統(tǒng)的編碼算法以及使用特殊形式奇偶校驗(yàn)矩陣的快速編碼算法。在譯碼算法里介紹了mp算法集的基本原理和譯碼性能最好的和乘積譯碼算法。 - The encoding complexity of ldpc codes length n seems indeed to be of order n2 , the dissertation study the coding scheme with linear time complexity . afterward , it introduces the coding schemes used in dvb - s2 and gets the parity check matrix by simulation
針對(duì)ldpc碼通用編碼算法的復(fù)雜度與碼長(zhǎng)的平方成正比的問題,重點(diǎn)研究了ldpc碼的快速編碼方法,總結(jié)出了使ldpc碼能夠達(dá)到線性編碼的途徑。 - The code length is very large when it be used . also , a significant amount of memory is needed to store their parity - check matrices . in this way , the encoding problem of ldpc codes may be an obstacle for their applications because they have high encoding complexity
Ldpc碼在應(yīng)用時(shí)選定的碼長(zhǎng)很長(zhǎng)而且編碼實(shí)現(xiàn)時(shí)所需的用于存儲(chǔ)的寄存器數(shù)量非常多,這樣,其編碼復(fù)雜度特別大,成為應(yīng)用的一個(gè)障礙。 - Some properties of separation vector of linear block codes are shown , the relationship of a variety of codewords subspace and separation vector is derived , also a serie of theorems of parity check matrix and code symbol separation are proved . the singlton bound of separation is then proved
然后簡(jiǎn)單分析了線性碼的碼元分離度的性質(zhì),并在此基礎(chǔ)上分析了一致校驗(yàn)矩陣的列相關(guān)性,從而得到了線性碼的消息分離度和碼元分離度的singlton限。 - On the other hand , in the approach based on vector - matrix , through several special operations on vector - matrix , we have constructed a sparse ‘ 0 ’ , ‘ 1 ’ parity - check matrix with dual diagonal matrix whose structure can easily construct the code . the simulation results have demonstrated the performance of this approach is similar to that of - rotation while the complexity is also higher . this problem is to be solved in the future research
在基于矢量矩陣的結(jié)構(gòu)化方法中,通過對(duì)矢量矩陣進(jìn)行一系列特殊處理可以構(gòu)造出稀疏的‘ 0 ’ 、 ‘ 1 ’校驗(yàn)矩陣,而校驗(yàn)矩陣中的雙對(duì)角結(jié)構(gòu)易于構(gòu)造出相應(yīng)的ldpc碼字,仿真表明,采用矢量矩陣的結(jié)構(gòu)化方法具有和-旋轉(zhuǎn)構(gòu)造法相當(dāng)?shù)男阅?但是實(shí)現(xiàn)的復(fù)雜度大于-旋轉(zhuǎn)構(gòu)造法,同時(shí)碼率和碼長(zhǎng)受到一定的限制,這也是未來需要研究的方向。
更多例句: 下一頁